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Abs t r ac t  

A simple rule in the form of total energy inequalities is proposed for special 
polymers of very large unit cells, in terms of some related polymers of small unit 
cells. If energy data can be calculated for the latter regular polymers, these energy 
values lead to energy constraints on the polymers of very large unit cells. The actual 
evaluation of these constraints involves only a simple inspection of the nuclear 
charges and elementary calculations. 

1. I n t r o d u c t i o n  

Disordered polymers such as biopolymers and doped, highly conducting 
polymers with randomly distributed impurities are of major importance in a wide 
variety of fields, ranging from DNA research to industrial applications (new types of 
batteries, etc.). Whereas the theoretical-computational methods for the elucidation of 
the electronic structure of periodic systems are well developed (see, for example, 
reviews [1,2]), the theoretical analysis of aperiodic systems is a much less straight- 
forward task. In periodic systems, the very periodicity can be exploited to reduce 
the complexity of  the computational task; however, there is no apparent shortcut for 
the accurate numerical calculation of the total energies of large aperiodic systems.* 

*It should be pointed out, however, that in quasi one-dimensional aperiodic systems the negative 
factor counting technique [ 2] gives quite reliable one-electron level distributions (density of states). 
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The available options seem to be very limited indeed, either to a statistical model or 
to "brute force" calculation of large aperiodic clusters, with a sacrifice of either 
numerical accuracy or computational feasibility. 

One may, however, set a much less ambitious goal of  providing some constraints,  

e.g. lower bounds of  energies of  aperiodic systems, using results obtained for some 
related periodic  systems. Such constraints do not yield precise values; nonetheless, 
they can provide some information on the electronic stability of some aperiodic 
systems, in comparison with some periodic ones. These constraints can also be used 
in simple tests for the reliability of various methods for direct energy band structure 
calculations and, as one of  our examples indicates, they can reveal the lack of reliability 
of some numerical results. 

In this paper, we shall describe a simple technique for obtaining energy in- 
equalities (energy bounds) for some polymers of very large unit cells (representing 
a "random" system) in terms of  periodic polymers of small unit cells. Whereas the 
technique is quantum-mechanically rigorous (within the Born-Oppenheimer approxi- 
mation), it is applicable only in special cases. The energy-ordering, when applicable, 
is necessarily valid for the exact energies and also for all approximate energies which 
are obtained within a consistent variational framework, e.g. for energies at the 
Har t ree-Fock  limit. Such energy inequalities naturally lead to energy bounds; how- 
ever, these energy bounds are in most cases rather loose. It is noteworthy that the 
testing of these energy inequalities in actual cases requires only elementary, back-of- 
the-envelope calculations, even for systems involving several hundred (or in the extreme 
case, infinitely many) atoms. 

2. T o t a l  e n e r g y  constraints for s o m e  re l a t ed  p o l y m e r s  

2.1. ELECTRONIC ENERGIES 

The proposed energy-ordering is based on the application of  a convexity 
property of molecular electronic energy functionals in the abstract nuclear charge 
space w z  [3,4]. Convexity properties in Coulomb systems have been used in studies 
on the jellium model and also in deriving the general result that the electronic energy 
is minimum for the united atom [ 5 - 7 ] .  More general relations, based on convexity 
and other geometrical-topological properties of molecular  electronic energy functionals 
in the abstract nuclear charge space Z, have led to various nuclear geometry-dependent 
and some geometry-independent results for a variety of molecular families [3,4,8,9]. 
In the present study, we shall use the following result: i f  M1,  M 2 . . . . .  Mn+ 1 are iso- 
electronic molecular systems of  the same nuclear geometry, all in the lowest electronic 
states of the same manifold, and if their nuclear charge vectors z l ,  z 2 . . . .  , z n + 
fulfill the condition 
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Z ~iZi = Z n +  1 , ( 1 )  
i = 1  

where the a i scalars satisfy the relations 

n 

Z oti= 1 
i = 1  

(2) 

o~ i ~> 0, i = 1 , . . . , n  (3) 

then for the e l ec t ron i c  energies E a ,  E 2 . . . . .  En ÷ 1 

/7 

~. c~iE i ~< En+ x (4) 
i = 1  

holds. (The components of the nuclear charge vector z i are the nuclear charges of 
species M i ,  listed in arbitrary but fixed order.) Whereas the proof of the above result 
is valid only for common nuclear geometries of all molecular systems M 1 . . . . .  Mn ÷ x ,  

minor geometry differences do not invalidate inequality (4), and in fact the strong 
inequality ( < )  applies in all but some pathological cases. 

We shall consider polymers which are built from similar but not necessarily 
identical monomeric units. The formal "length" of a given segment, e.g. of  the unit 
cell, will be characterized by the number m of monomeric units it contains. 

Owing to the logarithmic divergence of electronic and nuclear repulsion energy 
components of the total unit cell energy of an infinite polymer (vide infra), the 
method is directly applicable only to f i n i t e  (although arbitrarily long) polymer chains 
w i t h  p e r i o d i c  b o u n d a r y  c o n d i t i o n s ,  or where the chain-end effects are negligible. 
However, by taking the n' -+ ~ limit for the number n '  of  unit cells, the final total 
energy relations are valid for infinite polymers as well. 

In order to apply the above convexity relation (4) to our present problem, 
consider polymers M 1 . . . . .  M n  + 1 of unit cell lengths m 1 . . . . .  rnn + 1, respectively, 
with the following properties: There exist integers k I . . . . .  k n such that 

k i m  i = m n +  1 (i = 1,2 . . . . .  n). (5) 

Hence, all these polymers are periodic by the "large" period m n + l  although the 
first M 1 . . . . .  M n polymers have typically several of their actual unit cells contained 
in the large cell of  common length rn n + 1 • We choose w = s m n  + 1 as the dimension of 
nuclear charge space w z ,  where s is the number of nuclei in a monomer. 
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Assume that m n + x is much larger than any of the other m i numbers, i ~< n, 
that is, all the k i integers are large. Furthermore, assume that all large m n + x cells of  
M1 . . . .  , Mn, Mn + 1 are isoelectronic. Hence, if conditions (1 ) - (3 )  are fulfilled for 
the sm n +1 dimensional z i nuclear charge vectors, then one obtains the following 
generalization of  energy constraint (4) for a polymer M n + 1 of long unit cell in terms 
of  energies of  polymers M 1 . . . . .  M n of short  unit cells: 

n 

ki°~iEi <~ Ez+ 1" (6) 
i = 1  

Implicit in the above model is the assumption that the definition of  unit cell energy 
within each polymer fulfills a natural proportionality condition: taking k i unit cells 
of M i as a "large" new unit cell, the energy is k i E  i. Energy is an extensive physical 

proper ty  and any correct definit ion o f  an energy quant i ty  mus t  reflect this property.  

Such proportionality condition for total unit cell energies is necessary for any reliable 
numerical comparison between calculated stabilities of  polymers having unit cells of  
different sizes, or for comparisons between experimental and calculated relative 
stabilities of  polymers. As follows from the original formulations of the K~irm~in- 
Born boundary conditions, an energy per unit cell concept within an exact or any 
approximate quantum mechanical model should fulfull the following limit condition: 

Etot(Unit cell) --- lim { E t o t ( n ' ) / n '  } 
r l  t - -1  . 

= lim {[Enu c ( n ' )  + E ( n ' ) l / n ' }  . (7) 
r t  t -.-.~- 

Here, Etot (n ' ) ,  Enuc(n'  ) and E ( n ' )  are the total, nuclear repulsion and electronic 
energies, respectively, of  a polymer chain of n'  unit cells with periodic boundary 
conditions. The monomeric units far from each other along the chain are also assumed 
to be far from each other in space, that is, there is no folding of the chain. These 
conditions ensure proper additivity of unit cell energies for infinite polymers and also 
for large enough finite polymers if oo in the above expression is replaced by a large 
enough finite N' .  This is, of  course, also valid for open (that is, non-circular) polymers, 
whenever the chain-end effects are negligible as compared to the energy contributions 
from the intermediate portion of the chain. 

Unfortunately, in actual ab initio polymer calculations the above additivity 
condition is not automatically satisfied. Additivity (proportionality) of  unit cell 
energies requires the application of somewhat cumbersome truncation criteria [10], 
necessitated by a logarithmic divergence of  the electronic energy expansion in the 
Har t ree -Fock  and related models of an infinite polymer. (Actually, the divergence 
of  the negative infinite sum of  electron-nuclear attraction terms are compensated only 
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by the positive infinite sum of nuclear-nuclear repulsion terms in the total energy per 
unit cell expression of an infinite polymer.) These truncation criteria, however, are 
seldom applied in practice and in most polymer calculations, actual energy compari- 
sons between different unit cells are routinely performed, without recourse to such 
criteria [10]. Electronic energy is of  fundamental importance within any variational 
treatment where the very determination of the wave function, hence that of a n y  

related physical property, is based on energy minimization. Consequently, incorrect 
(e.g. non-additive) unit cell energies, when involved in variational energy minimization, 
cast some doubt on the reliability of  all other calculated properties. Whereas the rather 
common practice of comparing formal ab in i t io  unit cell energies obtained by an 
incorrect lattice sum truncation is known to be a very questionable approximation, the 
resulting error in re la t ive  energies has often been assumed to be minor. This practice 
may be justified in many instances; nonetheless, in most cases it is difficult to judge 
the error involved, without actually applying the correct truncation criteria. The 
technique described in this study offers a simple diagnostic tool for detecting severe 
inconsistencies. In some special cases (see, for example, (iv) below), these inequalities 
can clearly indicate that two formal unit cell energies obtained by incorrect truncation 
are not at all comparable. 

Our proposed inequalities are strictly valid only for correct, i.e. addi t ive ,  

energies per unit cell within any given approximation that is variational and involves 
a Hamiltonian depending linearly on the nuclear charges. (Hence, the technique is 
not applicable to certain semi-empirical methods of assumed Hamiltonians with no 
direct Z-dependence.) As follows from the above considerations, a formal violation 
of these inequalities may also serve as a diagnostic tool to indicate gross violations 
of the additivity condition of energies per unit cell within the actual approximation. In 
all such severe cases, very little physical meaning can be attached to the concept of  
direct, ab in i t i o  energies per unit cell obtained by incorrect truncation of the lattice 
s u m s .  

Assuming that correct additive energy values (calculated or experimental) are 
available for the polymers M 1 . . . . .  M n of short unit cells, these values constrain the 
electronic energy (give a l o w e r  energy bound) for the polymer M n ÷ x of long unit cell 
according to relation (6). The latter polymer m a y  f o r m a l l y  represent a random polymer, 
or, a polymer with randomly distributed impurities. Note, however, that even within 
a very large unit cell of  length m n ÷ x, the distribution of  nuclei is far from random, 
since relations (1 ) - (3 )  imply that Zn÷ ~ is fully determined by the nuclear charge 
vectors z l ,  . . . , z n of  the first n polymers M 1 . . . . .  M n.  In fact, using a given set of  
M 1 . . . . .  M n polymers one can "design" a formal "random" polymer using relations 
(1 ) - (3 )  and utilizing the following observation: in order to obtain a constraint for a 
"random" polymer of  large cell length m n ÷ l ,  it is advantageous to choose the 
rn 1 . . . . .  m n cell lengths as relative primes. In general, in the 
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a 1 a2 aj a r 
mn+1 = Pl  P2 " ' "  P/ " ' "  Pr (8) 

prime factorization of  m n + x,  each prime p/occurs  with an exponent a i that is the 
largest exponent p/appears with in any of the m 1 . . . . .  m n numbers. 

In order to establish relation (6) for actual polymers, only elementary addi- 
tions and multiplications are required, which calculations can, indeed, be carried out 
on the back of an envelope. However, actual numerical  lower bounds for electronic 
energy E n+ x require calculated or experimental estimates for the E i values of the 
M i (i = 1 . . . . .  n)  polymers of short unit cells. Nevertheless, direct calculations for 
those simpler polymers are a much easier computational task than that for polymer 
Mn+l (the latter task may very well fall far beyond current computational possi- 
bilities). 

2.2. NUCLEAR REPULSION ENERGY 

tion 
Let us assume that conditions (1 ) - (3 )  are fulfilled, and the additional condi- 

n - 1  n 

o Z (9) 
i = 1  j > i  

is satisfied, where z~ is the transpose of vector z i ,  and the elements of matrix Q are 
defined as 

Qu = 0 (10) 

Qi/ = 1/(2 dij ) ( i  4= ]). (11) 

Here, di] is the distance between nuclei i and ]. It can be shown that in such a case the 
convexity condition 

n 

o~iE/(nuc) ~< En+ 1 (nuc) (12) 
i = 1  

for the nuclear repulsion energies is also valid [11]. If for the n + 1 chemical systems 
both inequalities (4) and (12) are fulfilled, then for the total  energies one can write: 

n 

Z aiEi(t°t) ~< En+ 1 (tot). (13) 
i = l  
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If the above inequalities are applied for a disordered chain, then all the considerations 
concerning lattice sum truncation, as discussed above for the electronic energies, apply 
in identical form [see text following eq. (7)]. In the applications to polymers, the 
actual inequalities, analogous to inequality (6), are as follows: 

n 

~" kioliEi(nuc ) < En+ 1 (nuc) (14) 
i = 1  

and 

n 

~. k i~iEi( tot )  < En+ 1 (tot). (15) 
i = l  

EXAMPLES 

Example ( i) 

Consider the following monomeric units: 

A= 

H H C1 F 
I I I f 

- C -  B =  - C -  g = - C -  C =  - C -  
I I I I 
H CI H F 

and the following infinite polymers (only unit cells are indicated): 

M 1 = A B A B A B  

M 2 = A B A B A B A B A B A B A B  

M 3 = A B A B A B A C A B A B A B A B A C A C A C A C A C A B  

A C A B A C A B A B A C A C  

of cell lengths 

ml = 6  

m 2 = 14 

m3 = (mn+l )  = 42. 
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Evidently,  the prime factorization o f  m n + 1 = 42 = 2 × 3 × 7 follows rule (8), implying 
k 1 = 7 and k 2 -- 3. Since all o f  the AB,  A B  and A C  moieties are isoelectronic, the 
same follows for the " long"  unit cells o f  lengths k I m I = 7 × 6, k 2 m 2 = 3 × 14 and 
m3 =mn + 1 = 42. The Stun+ 1 = w dimension o f  the relevant nuclear charge space wz  
is smn + 1 = 3 × 42 = 126. Simple inspection o f  the nuclear charges shows that 

0 . 5 z  1+ 0 . 5 z  2 = z3, 

that  is, conditions ( 1 ) - ( 3 )  are fulfilled. Hence, for  the unit cell energies of  M1, M 2 
and M a 

k l a l E 1  + k 2 a 2 E 2  ~< E3 '  

that is, 

3 . 5 E  1 + 1 . 5 E  2 ~< E 3. 

A lower bound for the electronic energy o f  " r a n d o m "  polymer  M 3 of  unit cell length 
o f  42 (the cell containing 126 atoms) is obtained in terms o f  "regular"  polymers M 1 

and M 2 o f  unit cell lengths o f  6 and 14, respectively. Whereas direct ab initio calcula- 

tions for infinite periodic polymers M 1 and M 2 are not  impossible (only expensive), 

direct ab initio calculation for infinite polymer  M 3 is likely to be prohibitively 
expensive in the foreseeable future.  

Example (ii) 

Whereas actual numerical results for systems o f  the size o f  example (i) are at 

present not  available, nevertheless one may design simpler models of  "s tacking" 
polymers of  diatomics for which such numerical tests are possible: 

H CI I, R I = 322 a.u 
M 1 = t I R I + CI H 

R z = 5 7 0  a . u  (- ) 
R2 

H H Cl 
M2= I I 1 

C1 C1 H 

H g F F H El 
M 3 =  I t I I I I 

C| F F g El H 

All required relations are fulfilled with m I = 2, m 2 = 3, m 3 = 6 ,  k 1 = 3 ,  k 2 = 2 ,  
a 1 = 0.5, a 2 = 0.5 and s = 2. The dimension w of  the relevant nuclear charge space 
wz  is 12. Relation (6) gives 
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1.5 E 1 + E 2 % E 3 . 

Ab initio crystal orbital calculations [1 ] using an STO-3G basis set and incorporating 
only nearest neighbours' interactions between unit cells, give the following results 
when substituted into the above i n e q u i t y  

1 .5( -1154 .242  a.u.) + ( -1716 .285  a.u.) 

= -3447 .648  a.u. < -2957.699 a.u. 

The prescribed energy-ordering is evidently valid with a very large margin. Whereas the 
electronic energy bounds are, in general, rather loose, the extremely large electronic 
energy difference in the above inequality is not typical. It stems from the extreme 
differences between H and C1 atoms, which are the nuclei compared in this example. 

For the nuclear repulsion energies (also calculated in the nearest neighbour 
interactions approximation), one obtains the following inequality: 

1.5(186.561 a.u.) + 352.261 a.u. 

= 632.545 a.u. < 999.812 a.u. 

The result agrees with condition (12), leading to an inequality for the total energies: 

-2815.545 a.u. < -1957.887 a.u. 

that is the expected order. 

Example (iii) 

The differences between nuclei are much smaller, hence the energy bounds 
are much tighter, in the following example: 

C 0 ~ R l = 210 au. 
M I = II il R I 

0 C ~ R 2 = 6.00 a,u. 

Rz 

C C 0 
M 2 = It I[ H 

0 0 C 

C N N N C 0 
M 3 = II ill tll Ill LI II 

0 N N N 0 C 
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All parameters (except nuclear charges) are the same as in example (ii), and one again 
obtains 

1.5 E 1 + E 2 ~ E 3. 

The actual ab initio results of  the STO-3G basis polymer calculations give 

E 1 = -448 .006  a.u. 

E 2 = -672 .344  a.u. 

E 3 = -1334.775 a.u. 

Substitution into the above inequality gives 

-1344.353 a.u. ~< -1334.775 a.u. 

and the predicted constraint is evidently fulfilled. This energy bound gives an electronic 
energy difference of  1.6 a.u. per monomeric unit, still a rather large difference, but 
significantly smaller than that of  example (ii). 

The corresponding nuclear repulsion energy inequality is also satisfied: 

1.5(152.455 a.u.) + 267.819 a.u. 

= 496.501 a.u. < 672.142 a.u. 

Adding the electronic components, the total energy relation is also fulfilled: 

-847.851 a.u. < -662.633 a.u. 

Example (iv) 

Whereas the energy bounds are too loose to replace numerical calculations, 
nevertheless they are useful to give an ordering. In particular, they are useful diagnostic 
tools to assess the reliability of  numerical comparisons when the computational 
models themselves involve some approximations whose effect is difficult to estimate. 
For example, it is customary in polymer calculations to compare energies of  unit cells 
o f  various sizes taking into account the same number of  nearest neighbour's, next-to- 
nearest neighbour's, etc., interactions. The above condition alone, however, does not 
guarantee the compatibility of  the results [10] and, depending on the differences in 
the sizes of  unit cells, further interaction terms are required to ensure a proper trunca- 
tion of  the lattice sum and the "natural proportionality condition" of  unit cell energies, 
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referred to above. Whereas in the above examples neglecting the truncation criteria 
did not lead to severe errors causing a violation of inequality (6), this is not the case 
in our following example. 

Considering only nearest neighbour's interactions and no further corrections, 
the same set of polymers of example (iii), with a somewhat more crowded arrange- 
ment of  R 2 = 4.00 a.u., gives the following numerical results: 

E 1 = -477.332 a.u. 

E 2 = -698.969 a.u. 

E 3 = -1590.340 a.u. 

Substitution into the inequality gives 

-1414.967 a.u. @ -1590.340 a.u., 

that is, the constraint is violated, indicating a severe incomparability of the results 
on these three polymers, the energy discrepancy being at least 29.23 a.u. per consti- 
tuent molecule. The proposed energy bounds are evidently useful to point out such an 
incompatibility, which is expected to be particularly severe at shorter bond distances. 

Whereas the inconsistencies in the comparison of the formal unit cell electronic 
energies in this example lead to a violation of the inequality, this is not the case for 
the nuclear repulsion energies: 

1.5(202.406 a.u.) + 362.188 a.u. 

= 665.797 a.u. <~ 928.200 a.u. 

In fact, the above inequality for the nuclear repulsion energies is fulfilled with a large 
enough margin to compensate for the violation of the electronic energy inequality, 
leading to the expected inequality for the total energies: 

-749.170 a.u. ~< -662.140 a.u. 

Example (iv) shows that in a disordered chain with strongly coupled units 
(the distance between subsequent molecules being 4 a.u. = 2.12 A), one can not 
expect that nearest neighbour interactions (and most probably even second nearest 
neighbour interactions) provide sufficient numerical accuracy to fulfill all the inequali- 
ties. 
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3. Summary 

We may conclude that for weakly coupled units (e.g. for H-bonded or stacked 
units) in a disordered chain, the proposed energy relations are expected to be fulfilled 
even using inaccurate, e.g. one- or a few-neighbour's interactions approximation. On 
the other hand, for strongly coupled units (e.g. in a covalently bonded chain), the 
calculation of unit cell energy components sufficiently accurate to fulfill the energy 
inequalities evidently requires the evaluation of many more neighbour interactions 
and a careful application of truncation criteria. The proposed inequalities can serve 
as a diagnostic tool for pointing out severe discrepancies and to indicate the need 
for more consistent truncation. In some cases, as in example (iv), the inequality is 
not violated for total energies, only for the electronic energy components. This indi- 
cates that unsatisfactory truncation of lattice sums may not manifest itself in the 
total energy relations, when it is already severe enough to cause a violation of the 
electronic energy relations. Hence, for diagnosing severe truncation errors, an investiga- 
tion of energy components is a more sensitive test than that of the total energies. 
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